

Journal of Alloys and Compounds 239 (1996) 27-30

ALLOYS AND COMPOUNDS

Structural and magnetic properties of the novel compound $Dy_3(Fe,Ti)_{29}$

A. Margarian^{a,*}, Hong-Shuo Li^b, J.B. Dunlop^c, J.M. Cadogan^b

^aInstitut für Festkörper- und Werkstofforschung Dresden, D-01171 Dresden, Germany ^bSchool of Physics, The University of New South Wales, Sydney NSW 2052, Australia ^cCSIRO Division of Applied Physics, Lindfield, Sydney NSW 2070, Australia

Received 13 November 1995

Abstract

Microstructural characterisation, by means of energy dispersive X-ray microanalysis and X-ray diffraction of a Dy₃Fe_{27.5}Ti_{1.4} alloy annealed at 960°C for 7 days, has revealed the existence of a novel compound having the recently reported monoclinic Nd₃(Fe,Ti)₂₉-type structure. Thermogravimetric analysis (TGA) gives a magnetic ordering temperature of 438 K. Refinement of powder X-ray diffraction data by using the $P2_1/c$ (a = 10.5759 Å, b = 8.4962 Å, c = 9.6704 Å and $\beta = 97.0472^{\circ}$) and A2/m (a = 10.5759 Å, b = 8.4958 Å, c = 9.6697 Å and $\beta = 97.0416^{\circ}$) space groups yields reliability R factors of 10.4% and 9.8% respectively. ⁵⁷Fe Mössbauer spectroscopy measurements at room temperature yield an average ⁵⁷Fe magnetic hyperfine field of 19.9(2) T, which corresponds to an average Fe magnetic moment of 1.3 $\mu_{\rm B}$.

Keywords: Fe-rich intermetallics; Ternary rare earth compounds; Structure determination, Magnetic properties; Mössbauer spectroscopy

1. Introduction

In a world wide search to identify a new rare-earth intermetallic compound to replace $Nd_2Fe_{14}B$, research has been focused on Fe-rich rare-earth intermetallic compounds interstitially modified with nitrogen or carbon. $Nd_2Fe_{14}B$ is a well established and widely used magnetic material, although it is limited in application owing to its relatively low Curie temperature. Compounds such as $Sm_2Fe_{17}N_{3-\delta}$ and $NdFe_{11}TiN_{1-\delta}$ have been reported to be possible alternatives to $Nd_2Fe_{14}B$ as both compounds exhibit uniaxial anisotropy and Curie temperatures above 700 K.

In 1992, Collocott et al. [1] reported the identification of a novel ternary phase $Nd_2(Fe,Ti)_{19}$ ('2:19') which existed at a composition between those of the well-known $Nd_2(Fe,Ti)_{17}$ and $Nd(Fe,Ti)_{12}$ phases. Originally the structure of the '2:19' was assigned a $2 \times a$ and $4 \times c$ superlattice of hexagonal TbCu₂. The structure of this phase was solved independently by Li et al. [2] from powder X-ray diffraction (XRD) and by Hu and Yelon [3] utilising neutron diffraction. Both refinements showed the compound had a monoclinic structure (space group $P2_1/c$, No. 14) and that the 'ideal' composition was Nd₃(Fe,Ti)₂₉ '3:29'. In a recent paper by Kalogirou et al. [4], the A2/m space group was identified as giving a better structure. The '3:29', like the '2:17' and '1:12' structures, is derived from the hexagonal CaCu₅ structure and is formed by the replacement of Ca atoms by an Fe-Fe dumb-bell. In relation to rare-earth-iron-transition metal alloy systems, the Ca corresponds to the rare-earth atoms and the Cu to transition metal atoms. This replacement procedure can be represented by the following expression $R_{1-\delta}(2T)_{\delta}T_5 \rightarrow RT_y$ where δ is the fraction of Ca atoms replaced by an Fe-Fe dumb-bell. For the '3:29' $\delta = 2/5$ [2], and for the '2:17' and '1:12', δ is 1/3 and 1/2 respectively. The '3:29' is an intermediate phase and can be represented by the following equation: $R_3(Fe, Ti)_{29} = R_2(Fe, Ti)_{17} + R(Fe, Ti)_{12}$.

The '3:29' phase is now known to form in ternary systems other than that of Nd-Fe-Ti, and has been reported to exist for R-Fe-Ti (R = Y [5], Ce [6], Pr

^{*} Corresponding author. Present address: CSIRO Division of Applied Physics, PO Box 218, Lindfield, Sydney, NSW 2070, Australia. Tel: (+61) 2 413 7410; fax: (+61) 2 413 7573; e-mail: asso@dap.csiro.au. Also at the Department of Applied Physics, University of Technology, Sydney, Australia.

^{0925-8388/96/\$15.00 © 1996} Elsevier Science S.A. All rights reserved *PII* \$0925-8388(96)02233-5

[7], Sm [8], Gd [9] and Tb [10]), R-Fe-V (R = Y, Nd, Sm, Gd [11] and Dy [12]), Nd-Fe-M (M = Cr, Mn [13], Re [14], Mo [4] and W [15]) and R-Fe-Mn (R = Ce, Nd and Sm [13]) systems.

The $R_3(Fe,Ti)_{29}$ compounds, like their $R(Fe,Ti)_{12}$ and $R_2(Fe,Ti)_{17}$ counterparts, can be interstitially modified with nitrogen [16–18] and carbon [19], with increases observed in the magnetic ordering temperature, anisotropy field and saturation magnetisation.

Here, we report microstructural characterisation by backscattered electron (BSE) imaging and energy dispersive X-ray microanalysis (EDS), powder X-ray data refinement, thermogravimetric analysis (TGA) and Mössbauer spectroscopy of an alloy having a nominal composition of $Dy_3Fe_{27.5}Ti_{1.4}$, and having the Nd₃(Fe,Ti)₂₉-type compound as the majority phase.

2. Experimental procedure

An alloy with a composition of $Dy_3Fe_{27.5}Ti_{1.4}$ was prepared from Dy, Fe and Ti of greater than 99.9% purity by argon-arc melting, and then annealing in a sealed quartz tube under an argon atmosphere at 960°C for 7 days. Microstructural characterisation was carried out using a Jeol 5400LV scanning electron microscope equipped with an EDS system for quantitative analysis, and a backscattered electron detector for imaging and phase contrast analysis. The sample was etched in a 4% solution of nitric acid in alcohol (Nital) to generate topological contrast. Structural characterisation of the alloy was made with a Philips X-ray diffractometer (Co K α radiation) and the structure refined using a modified Rietveld profile analysis program [20]. Curie temperatures were determined by using a Perkin-Elmer TGA, modified by a permanent magnet to function as a Faraday balance. ⁵⁷Fe Mössbauer spectroscopy was carried out using a constant acceleration, transmission spectrometer with a ⁵⁷CoRh source and calibrated with an α -Fe foil.

3. Results and discussion

A combination of scanning electron microscopy utilising BSE imaging and EDS, and powder XRD of a $Dy_3Fe_{27.5}Ti_{1.4}$ alloy annealed at 960°C for 7 days has revealed the existence of a novel ternary phase with a nominal composition of $Dy_3(Fe,Ti)_{29}$ and having the monoclinic $Nd_3(Fe,Ti)_{29}$ -type structure. Fig. 1 shows a BSE micrograph of the annealed alloy after etching. EDS analysis of the majority phase using a LINK software package yields an apparent Dy:Fe:Ti ratio of 8.3:87.0:4.7 which corresponds to the presence of the $Dy_3(Fe,Ti)_{29}$ compound. The second phase, which is approximately 15% of the total, has an apparent

Fig. 1. BSE micrograph of $Dy_3Fe_{27.5}Ti_{1.4}$ after etching (majority phase— $Dy_3(Fe,Ti)_{29}$, rise— $Dy(Fe,Ti)_{12}$).

Dy:Fe:Ti ratio of 7.2:86.2:6.6, and is the tetragonal Dy(Fe,Ti)₁₂ phase. Owing to the very strong overlap which exists between the Dy L and Fe K series lines, the compositional ratios require further correction. Table 1 shows the apparent and normalised data, where the normalised data was determined with reference to a single phase sample of Dy_2Fe_{17} , which had been prepared with negligible weight loss during arcmelting and annealing.

XRD analysis shows that the main phase present in the as-cast sample has the hexagonal Th_2Ni_{17} -type structure. Annealing the sample for a period of 7 days at 960°C results in the formation of Dy₃(Fe,Ti)₂₉ with the monoclinic Nd₃(Fe,Ti)₂₉-type structure as the majority phase. In our sample there is approximately 85% of the Dy₃(Fe,Ti)₂₉ compound and 15% of the Dy(Fe,Ti)₁₂ phase.

Two Rietveld refinements have been carried out on our powder XRD data, the first assuming the original $P2_t/c$ space group assignment reported by Li et al. [2], and the second using the A2/m space group suggested by Kalogirou et al. [4]. The A2/m space group is a minimal non-isomorphic supergroup of type II of the $P2_t/c$ space group, and was reported, by Kalogirou et al. [4], to give a better structural description of the monoclinic '3:29' structure. Figs. 2 and 3 show the observed and calculated diffraction patterns for both the $P2_t/c$ and A2/m space groups respectively. Table 2 lists the lattice parameters obtained from the Rietveld refinement for both structural assignments. The resultant R values obtained from the fitting procedure

Table 1 Apparent and normalised EDS data for $Dy_3(Fe, Ti)_{29}$

		Apparent (at.%)	Normalised (at.%)	
$\overline{\text{Dy}_3(\text{Fe},\text{Ti})_{29}}$	Dy	8.3	9.6	
	Fe	87.0	85.7	
	Ti	4.7	4.7	

Fig. 2. Observed and calculated diffraction spectra for the $P2_i/c$ space group.

Fig. 3. Observed and calculated diffraction spectra for the A2/m space group.

show that the A2/m space group better describes the '3:29' structure.

Curie temperatures were measured in a Perkin– Elmer TGA modified by addition of a permanent magnet, to function as a Faraday balance. Fig. 4 shows the TGA trace for the $Dy_3Fe_{27.5}Ti_{1.4}$ annealed alloy. Two events have been observed: the first corresponds to the presence of the $Dy_3(Fe,Ti)_{29}$ phase, which has a Curie temperature of 438 K; the second occurs at 544 K and corresponds to the magnetic ordering temperature of the $Dy(Fe,Ti)_{12}$ phase. A TGA analysis of a $Dy_2(Fe,Ti)_{17}$ sample (Fig. 4) shows that this phase has a magnetic ordering temperature of 426 K, clearly distinguishing it from the $Dy_3(Fe,Ti)_{29}$ phase. The presence of two thermal events in the TGA trace

Table 2

Refined structural data of the monoclinic lattice using the $P2_1/c$ and A2/m space groups

Space group	a (Å)	b (Å)	c (Å)	β (deg)	R (%)
$P2_1/c$	10.5759	8.4962	9.6704	97.0472	10.4
A2/m	10.5759	8.4958	9.6697	97.0416	9.8

Fig. 4. TGA trace for the $Dy_3Fe_{27.5}Ti_{1.4}$ ($Dy_3(Fe,Ti)_{29}$ and $Dy(Fe,Ti)_{12}$) annealed alloy and $Dy_3(Fe,Ti)_{17}$.

Fig. 5. Experimental and calculated ⁵⁷Fe Mössbauer spectra at 293 K (dots—observed, solid line—calculated).

corresponding to the '3:29' and '1:12' phases is in agreement with scanning electron microscopy and EDS analyses.

The ⁵⁷Fe Mössbauer spectrum is shown in Fig. 5. Owing to the complexity of the structure, and hence the large number of Fe sites (11) in the monoclinic $R_3(Fe,M)_{29}$ structure and the effects of site occupancy by the 3d transition element atoms, only an average hyperfine field could be determined for Dy₃(Fe,Ti)₂₉. In order to generate the theoretical fit, four magnetically-split sextets with variable line widths were employed. The deduced ⁵⁷Fe average hyperfine field from the fitting procedure is 19.9(2) T at 293 K. This corresponds to an average Fe magnetic moment of 1.3 $\mu_{\rm B}$.

4. Conclusion

In conclusion, we have prepared an alloy with a nominal composition of $Dy_3Fe_{27.5}Ti_{1.4}$ which contains the novel ternary phase $Dy_3(Fe,Ti)_{29}$. Structural refine-

ment of powder XRD data, using the $P2_1/c$ and A2/mspace groups, demonstrates that the novel phase has the monoclinic Nd₃(Fe,Ti)₂₉-type structure. The A2/mspace group provides a better structural description, with an *R* value of 9.8%, whereas for the $P2_1/c$ assignment, an *R* value of 10.4% is achieved. The magnetic ordering temperature of the new phase is 438 K. ⁵⁷Fe Mössbauer spectroscopy yields an average hyperfine field of 19.9(2) T at 293 K, which corresponds to an average Fe magnetic moment of 1.3 $\mu_{\rm B}$. The identification of the '3:29' phase in the DyFeTi system further expands the series of rare-earth-irontransition element systems for which this phase exists.

Acknowledgements

A. Margarian would like to thank L. Schultz and K.-H. Müller for the opportunity to carry out research at IFW Dresden, and IFW Dresden for the financial support provided.

References

- S.J. Collocott, R.K. Day, J.B. Dunlop and R.L. Davis, in *Proc.* 7th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys, Canberra, Australia, 1992, p. 447.
- [2] H.-S. Li, J.M. Cadogan, R.L. Davis, A. Margarian and J.B. Dunlop, Solid State Commun., 90 (1994) 487.
- [3] Z. Hu and W.B. Yelon, Solid State Commun., 91 (1994) 223.

- [4] O. Kalogirou, V. Psycharis, L. Saettas and D. Niarchos, J. Magn. Magn. Mater., 146 (1995) 335.
- [5] H.-S. Li, D. Courtois, J.M. Cadogan, B.-P. Hu and W.-S. Zhan, Proc. IEEE Int. Magnetics Conf. (Intermag 95), San Antonio. TX, USA, 1995.
- [6] A. Margarian, J.B. Dunlop and S.J. Collocott, unpublished results, 1994.
- [7] H.-S. Li, Suharyana, J.M. Cadogan, G.J. Bowden, J.-M. Xu, S.X. Douand and H.K. Liu, J. Appl. Phys., 75 (1994) 7210.
- [8] A. Margarian, J.B. Dunlop and S.J. Collocott, Rare-Earth Magnets Workshop (abstract), Wagga Wagga, NSW, Australia, 1994, p. 27.
- [9] J.-M. Xiu, H.-S. Li, J.M. Cadogan, S.X. Dou and H.K. Liu, J. Phys.: Condens. Matter, in press.
- [10] M.R. Ibarra. L. Morellon, J. Blasco, L. Pareti, P.A. Algarabel, J. Garcia, F. Albertini and A. Paoluzzi, J. Phys.: Condens. Matter, 6 (1994) L717.
- [11] Ye.V. Shcherbakova, G.V. Ivanova, A.S. Yermolenko, Ye.V. Belozerov and V.S. Gaviko, J. Alloys Comp., 182 (1992) 199.
- [12] D. Courtois, H.-S. Li and J.M. Cadogan, Proc. IEEE Int. Magnetics Conf. (Intermag 95), San Antonio, TX, USA, 1995.
- [13] C.D. Fuerst. F.E. Pinkerton and J.F. Herbst, J. Magn. Magn. Mater., 129 (1994) L115.
- [14] N. Scheepers, A. Margarian and J.B. Dunlop, in preparation.
- [15] A. Margarian, J.B. Dunlop, J.M. Cadogan and H.-S. Li, in preparation.
- [16] D.H. Ryan, J.M. Cadogan, A. Margarian and J.B. Dunlop, J. Appl. Phys., 76 (1994) 6150.
- [17] A. Margarian, J.B. Dunlop, S.J. Collocott, H.-S. Li, J.M. Cadogan and R.L. Davis, Proc. 8th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys, Birmingham, UK, 1994, p. 353.
- [18] O. Kalogirou, V. Psycharis, M. Gjoka and D. Niarchos, J. Magn. Magn. Mater., 147 (1995) L7.
- [19] B.-P. Hu, G.-C. Li, Y.-Z. Wang, B. Nasunjilegal, N. Tang, F.-M. Yang, H.-S. Li and J.M. Cadogan, *J. Phys.: Condens. Matter*, 6 (1994) L595.
- [20] C.J. Howard and R.J. Hill, J. Appl. Crystallogr., 18 (1985) 173